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Abstract. The velocity autocorrelation functions and the corresponding memory functions for a
set of liquid metals and Lennard-Jones fluids have been calculated using a mode-coupling theory.
The data required for the theoretical calculations have been obtained from molecular dynamics
simulations. The influence of both the short repulsive wall and the attractive well of the potential
on the binary and mode-coupling terms of the memory function has been analysed. The mode-
coupling theory has been tested by comparing the theoretical results with those directly obtained
from computer simulations. The most marked discrepancies correspond to systems showing
velocity autocorrelation functions with weak backscattering. In the case of the Lennard-Jones
fluids, the binary term of the memory function is less well described using a gaussian function.

1. Introduction

Molecular dynamics (MD) simulation is a useful technique for computing static and
dynamical properties of fluids. Furthermore, MD constitutes a suitable tool for checking
the theories of liquids, since some of the properties involved in them cannot be directly
obtained from experiments. The velocity autocorrelation functionC(t) is an example of
such properties. The first MD studies ofC(t) for simple liquids were developed around
the middle of the 1960s, just when Zwanzig and Mori established their general theory
on the projection operators and memory functions for time correlation functions. At the
beginning of the 1970s several phenomenological models forC(t) and its memory function
K(t) were proposed. A summary may be found in the books of Boon and Yip [1] and
Hansen and McDonald [2]. However, some researchers looked for theories based on first
principles which gave a complete picture of theC(t) and could explain important features
such as the backscattering or the long-time-tailt−3/2-behaviour. With that aim, microscopic
studies based on generalized kinetic and mode-coupling theories were applied to compute
the time correlation functions of simple liquids [1–3]. The Sjögren and Sj̈olander (SS)
theory [4, 5], based on a combination of kinetic and mode-coupling concepts, is one of the
most successful approaches. Moreover mode-coupling theories have also been applied to
other problems such as that of the dynamical properties of polymeric liquids, the analysis of
glass transitions for supercooled liquids, and the determination of the paramagnetic region
for magnetic systems or the dynamics of critical phenomena [6, 7].
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The SS theory is based on the hypothesis thatC(t) can be divided into two parts: (1) a
binary term which is associated with the short-time events and (2) a mode-coupling term
which incorporates more sophisticated processes that appear at longer times. This theory
has yielded good results for liquid Ar [4] and liquid monovalent metals [8–15] near their
triple point. However, some discrepancies have been observed for liquid metals at higher
temperatures [13, 16–18]. causes of these discrepancies and the situations in which they
appear have not been sufficiently analysed. The main objective of this work is to check the
SS theory for a wide variety of simple liquids characterized byC(t)s with different shapes.
We have also analysed the influence of the different parts of the potential on both the binary
and mode-coupling terms. So, we have also considered systems of particles with purely
repulsive interactions by truncating the potentials at their first minima.

The paper is organized as follows. In section 2 the SS mode-coupling theory is
summarized and the basic formulas are compiled. The computational details as well as
the numerical procedures used to calculate the memory function are described in section
3. The results are shown in section 4. The dependences of the mode-coupling and binary
terms of the memory function are discussed in section 4.1, whereas section 4.2 is devoted
to the comparison of the mode-coupling and molecular dynamics results. Finally, the main
conclusions of the work are stated in section 5.

2. Mode-coupling theory

The time correlation functions such asC(t) can be studied through the formalism developed
by Zwanzig and Mori, which is based on a Volterra-like integral equation [1–3]:

dC(t)

dt
= −

∫ t

0
K(t ′)C(t − t ′) dt ′ (1)

whereK(t) is a more basic property called the memory function.
One of the conclusions of the MD simulation work by Levesque and Verlet [19] on dense

Lennard-Jones fluids was thatK(t) may be well described by the analytical expression

K(t) = A exp(−at2)+ Bt4 exp(−bt). (2)

Thus, the memory function can be divided into two parts. The first is a gaussian term
dominant at short times, which takes into account the single uncorrelated binary collisions.
The second term is initially negligible, increases with time ast4, reaches a maximum and,
finally, decays exponentially. This term is related to the collective effects. During the
1970s, several theoretical investigations were developed in order to give physical sense to
the previous analytical form. One of these studies was that of Sjögren and Sj̈olander [4]
who, following the results of Levesque and Verlet, divided the memory function into two
terms:

KSS(t) = KB(t)+KMC(t) (3)

where we have termed the memory function calculated according the Sjögren and Sj̈olander
theoryKSS(t). KB(t) is the binary memory function, whereasKMC(t) is obtained by using
the mode-coupling theory [1–3] which is based on the idea that the motion of a tagged
particle is influenced by constraints collectively imposed by its neighbouring particles.
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2.1. The binary term

Following the Levesque and Verlet results, Sjögren and Sj̈olander assumed a gaussian
functional for the binary term:

KB(t) = �2
0 exp(−t2/τ 2) (4)

where�2
0 is the square of the Einstein frequency or the initial value of the memory function,

which can be obtained from the radial distribution functiong(r) and the pair potential
φ(r) [1–3]. The parameterτ , which plays the role of an averaged collision time, can be
approximately expressed in terms ofg(r), the first and second derivatives ofφ(r) and the
static structure factorS(k) [3, 4, 8, 15].

2.2. The mode-coupling term

Sjögren and Sj̈olander considered the coupling of the velocity of a tagged particle with the
density and the longitudinal and transverse currents of the system. They assumed that the
mode-coupling part has four contributions [4, 8]:

KMC(t) = K00(t)+K01(t)+K11(t)+K22(t). (5)

The Laplace transforms of these terms are

K̃00(z) = R̃00(z)

K̃01(z) = R̃01(z)
[
K̃B(z)+ K̃SS(z)

]
K̃11(z) = K̃B(z)R̃11(z)K̃

SS(z)

K̃22(z) =
[
K̃B(z)+ R̃00(z)+ K̃B(z)R̃01(z)

]
R̃22(z)K̃

SS(z)

(6)

where K̃B(z) and K̃SS(z) are respectively the Laplace transforms of the binary term and
the total memory functions. The Laplace transform of this last element is

K̃SS(z) = K̃B(z)+ R̃00(z)+ K̃B(z)R̃01(z)

1− R̃01(z)− K̃B(z)R̃11(z)− [K̃B(z)+ R̃00(z)+ K̃B(z)R̃01(z)]R̃22(z)
(7)

where theR̃ij (z) are the Laplace transforms of the recollision termsRij (t) that are compiled
in references [4, 3, 8]. The final forms of theRij (t) quantities, when spherical symmetry
is assumed, are

R00(t) = ρkBT

6π2m

∫ ∞

0
k4c2(k)1Fs(k, t) F (k, t) dk

R01(t) = − 1

6π2�2
0

∫ ∞

0
k2c(k)

[
γL(k)+ ρkBT

m
k2c(k)

]
1Fs(k, t)

∂F (k, t)

∂t
dk

R11(t) = − 1

6π2�4
0ρ

∫ ∞

0
k2

[
γL(k)+ ρkBT

m
k2c(k)

]2

1Fs(k, t)
Cl(k, t)

Cl(k, 0)
dk

R22(t) = − 1

3π2�4
0ρ

∫ ∞

0
k2
[
γT (k)

]2
1Fs(k, t)

Ct (k, t)

Ct (k, 0)
dk

(8)

whereρ is the density,m the atomic mass,T the temperature,kB the Boltzmann constant,
c(k) the Fourier transform of the direct correlation function andγL(k) and γT (k) two k-
dependent quantities which are defined in references [3, 15].F(k, t) andFs(k, t) are the
intermediate coherent and incoherent scattering functions andCl(k, t) andCt(k, t) are the
longitudinal and transverse current correlation functions [2, 3].1Fs(k, t) is the difference



11012 M Canales and J̀A Padró

betweenFs(k, t) andF0(k, t), whereF0(k, t) = exp(−(kBT /2m)k2t2) is the free-particle
form of the intermediate-scattering function.

K00(t), which is in general the dominant term, starts liket4 and incorporates the
effects of the coupling of the velocity of a tagged particle with the density fluctuations
of the surrounding medium. TheK01(t), K11(t) andK22(t) terms start liket6 and reflect
respectively the coupling with the first derivative of the dynamic structure factor, the
longitudinal and the transverse currents [8].

3. Computational details

3.1. Interatomic potentials

The results presented in this paper have been obtained from MD simulations of particles
with the mass of7Li by assuming different interaction potentials. Except for run LM1T,
systems at the same temperature and density (T = 470 K andρ = 0.044 512Å−3) which
correspond to liquid lithium close to the triple point have been considered. Run LM1T
corresponds to liquid Li atT = 843 K andρ = 0.041 62Å−3.

Figure 1. Effective pair potentials. Solid lines: liquid metals (LM1 and LM2); dashed lines:
Lennard-Jones systems (LJ1, LJ2 and LJ3).

Two liquid-metal potential models (LM1 and LM2) have been assumed. LM1 is
an effective potential for Li with no adjustable parameters, deduced from the neutral-
pseudoatom (NPA) method [20]. Since the effective potentials depend on the thermodynamic
state, the potential used in the run LM1T is slightly different from LM1, despite the two of
them being obtained by the same procedure. However, the differences between LM1 and
LM1T are very small. LM2 was obtained by assuming an empty-core pseudopotential with
a core radius determined by fitting the calculated main peak of the static structure factor
S(k) to the experimental value [21]. Although the shapes of the LM1 and LM2 potential
functions are markedly different, they produce similar properties which are in agreement
with the available experimental data [22, 23]. As may be observed in figure 1, the LM1
potential shows a deeper potential well at a smallerr-value than the deep well of LM2.
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Hence, the mean interatomic distances for LM2 are larger than those for LM1. The volume
packing fractions (η = ρπσ 3/6) corresponding to our simulations with LM1 and LM2 are
η = 0.4 andη = 0.6, respectively. Other effective pair potentials recently used in MD
simulations of liquid Li [14, 24] are intermediate between the LM1 and LM2 models but
significantly closer to LM1.

Table 1. The position of the first zero (σ ) and the depth of the first minimum of the potentials
(ε), together with the reduced densities (ρ∗) and temperatures (T ∗) of the systems simulated in
this work.

System σ (Å) ε (K) ρ∗ T ∗

LM1, RLM1 2.57 887 0.756 0.530
LJ1, RLJ1 2.57 887 0.756 0.530
LM1T 2.57 951 0.706 0.886
LM2, RLM2 2.95 248 1.143 1.895
LJ2, RLJ2 2.95 248 1.143 1.895
LJ3 2.57 248 0.756 1.895

The main features of the potential functions may be simply characterized by two
parameters, i.e. the position of the first zero (σ ) and the depth of the first minimum (ε). The
values ofσ andε for the different potentials together with the reduced densities (ρ∗ = ρσ 3)
and temperatures (T ∗ = kBT /ε) of the systems studied in this work are reported in table 1.
Balucaniet al [10] have shown that the properties of different alkali metals (Na, K, Rb and
Cs) at states close to the triple point show a common behaviour when reduced units are
used. The reduced density and temperature of these systems (ρ∗ = 0.895 andT ∗ = 0.78–
0.84) are intermediate between those for LM1 and LM2. According to these findings, the
LM1 and LM2 potentials may be considered as two extreme models representative of liquid
alkali metals near the melting point, though the properties of the real systems would be
closer to those with LM1.

Lennard-Jones potentials with the sameσ and ε as LM1 and LM2 have also been
considered and they will be termed LJ1 and LJ2, respectively. The reduced densities
and temperatures of the systems simulated with these potentials are the same as those
corresponding to LM1 and LM2. We have also performed MD simulations of a Lennard-
Jones fluid with the sameσ as LJ1 and the sameε as LJ2. This potential will be termed LJ3.
Moreover, four purely repulsive interaction models have been assumed. These potentials,
which are termed RLM1, RLM2, RLJ1 and RLJ2, are the same as LM1, LM2, LJ1 and
LJ2, respectively, but truncated at their first minima.

3.2. Computer simulations

A cubic box with 668 particles and periodic boundary conditions [25] has been considered
in each of the simulations. Beeman’s algorithm [26] with a time step of 3 fs has been used
for the numerical integration of the equations of motion. The properties of the systems have
been determined during runs of 105 time steps, after an equilibration period of 104 time steps.
This study includes the calculation of radial distribution functions, velocity autocorrelation
functions, mean square displacements, shear and bulk viscosities and thermal conductivities
as well ask-dependent properties such as coherent and incoherent intermediate-scattering
functions and longitudinal and transverse current correlation functions. Thek-dependent
properties have been calculated for 20 differentks within the 0.25Å−1 and 5Å−1 interval.
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3.3. Calculation of the memory function

The memory functionK(t) has been determined by two procedures. The former is based on
the numerical solution of equation (1). To this end, several algorithms have been proposed
[27–30]. We have used the method of Berne and Harp [27] to calculate theK(t)s from
the C(t)s resulting from the MD simulations. These memory functions, which may be
considered as ‘exact’ results, will be namedKMD(t). The second procedure consists in the
calculation ofK(t) according to the mode-coupling theory of Sjögren and Sj̈olander,KSS(t).
This method requires the determination ofKB(t) andKMC(t). For this calculation we have
used different MD results. The parameters�0 andτ of the binary term (see equation (4))
have been computed from theg(r)s. In order to obtainS(k), which is required for the
computation ofτ , the functiong(r) has been extended to distances greater than the half-
length of the simulated cubic box using the procedure proposed by Verlet [25, 31]. To this
end the Ornstein–Zernicke equation has been solved using the algorithm designed by Zerah
[32]. The same procedure has been used to calculatec(k), which is also required for the
computation ofKMC(t).

The knowledge of the fullF(k, t), Fs(k, t), Cl(k, t) andCt(k, t) functions is needed to
computeKMC(t) (see equations (5)–(8)). For this reason we have considered fourk-regions
and different treatments have been used for each of them.

For k < 0.25 Å−1 the hydrodynamic model has been assumed. According to this model
Ss(k, ω) andCt(k, ω) are single lorentzians centred atω = 0 andS(k, ω) is made up of
three lorentzians centred at the origin an atω = ±vsk, vs being the adiabatic velocity of
sound [1–3, 33]. The thermodynamic and transport coefficients required to compute these
functions have been obtained from the energy and pressure fluctuations [25] and using the
Green–Kubo relations [25, 34], respectively.

An interpolation procedure [35] has been applied to the MD results to obtain the
correlation functions in the 0.25̊A−1 6 k 6 2 Å−1 interval.

In the 2 Å−1 6 k 6 5 Å−1 region, the functions change sharply and interpolation
methods cannot be used. Thus, the viscoelastic model developed by Lovesey [36] has been
assumed. It is based on the assumption of an exponential behaviour of the second-order
memory function ofF(k, t) [3, 36]. The coefficients appearing in theF(k, t) expression
can be obtained from the radial distribution function, the pair potential and its derivatives.
This model has been checked for different simple liquids [3, 36–38] and in all cases it has
yielded good results forks close to theS(k) maximum. The viscoelastic model for the
transverse current correlation function can be constructed by an analogous procedure, but
in this case the knowledge of the shear viscosity coefficientηS and the assumption of a
special closure relation, such as that in the Akcasu and Daniels approach, are required [3].
Fs(k, t) has been computed by assuming a gaussian approximation [1–3]:

Fs(k, t) = exp
[− 1

6k
2r2(t)

]
wherer2(t) is the mean square displacement.

For k > 5 Å−1 the free-particle approach [2, 3] has been assumed. Thus,

F(k, t) = Fs(k, t) = Ct(k, t)/Ct (k, 0) = F0(k, t) = exp

(
−kBT

2m
k2t2

)
and

Cl(k, t)/Cl(k, 0) =
(

1− kBT
m
k2t2

)
exp

(
−kBT

2m
k2t2

)
.



On the MC theory for the C(t) of simple liquids 11015

Figure 2. Mode-coupling contributions to the memory for the LM1 and LJ1 systems. Solid lines:
K00(t); dashed lines:K01(t); long-dashed lines:K11(t); long-dashed–dotted lines:K22(t). The
functions have been normalized with respect toKMD(0).

4. Results

4.1. The mode-coupling term

The four contributions toKMC(t) have been calculated according to the procedure described
in the preceding section. As for other simple liquids [8, 11, 13, 16], that ofK00(t) is the
dominant contribution. MoreoverK01(t) andK11(t) are of the same order of magnitude but
have opposite signs, whereas the contribution ofK22(t), which is the term responsible for
the asymptotict−3/2-behaviour ofC(t), is negligible in all of the cases considered in this
work. In general theKij (t)s for liquid metals are large and show more marked oscillations
than those for the Lennard-Jones fluids for the same reduced thermodynamic conditions.
The results for LM1 and LJ1 are shown in figure 2.

The density–density contributions toKMC(t) are displayed in figure 3.K00(t) for liquid
metals shows three peaks, whereas for Lennard-Jones systems it only shows a low peak. The
three peaks may also be clearly observed in the case of the purely repulsive potential RLM2
but for RLM1 they are significantly smoothed. These results indicate that the three-peak
structure should be related to the softer repulsive wall of the liquid-metal potentials. The
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Figure 3. The density–densityK00(t)/KMD(0) mode-coupling terms.

interactions at distances beyond the first minima of the potentials have no noticeable effects
on the positions of the peaks, but produce a significant increase of the height of the maxima.
This increase is more evident for LM1; this may be associated with the stronger attractive
forces for this potential. Finally it can be observed that an increase of the temperature gives
raise to a decrease of theK00(t) maxima.

4.2. The binary term

The theoretical results for�2
0 and τ calculated from theg(r), S(k) and φ(r) [1–3]

are gathered together in table 2. The differences among the values of�2
0 reflect the

differences between the radial distribution functions and the pair potentials for the different
systems. The values ofτ can be divided in two groups: on the one hand, the liquid
metals and their repulsive models; and on the other hand, the Lennard-Jones systems and
their respective repulsive interaction systems. This shows that the short-time dynamics
is basically dependent on the repulsive wall of the potential. The direct comparison of
the results for RLJ1 and RLM1, for which theg(r)s are very similar, indicate that softer
repulsive walls of the potential produce lower values of�2

0 and higherτ -values. The other
parts of the potential increase�2

0 andτ moderately, this increase being larger for potentials
with a deeper well. The values of�2

0 for LM1 and LM1T show that this quantity decreases
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when the temperature increases. This may be related to the weaker structure of the fluid at
high temperature.

Table 2. The square of the Einstein frequency (�2
0), and the theoretical values (τtheo) and fitted

values (τf it ) of the averaged collision times of the binary term of the memory function.

System �2
0 (ps−2) τtheo (ps) τf it (ps)

LM1 1673 0.0317 0.0353
RLM1 1520 0.0272 0.0296
LM1T 1598 0.0280 0.0296
LM2 1795 0.0317 0.0351
RLM2 1747 0.0311 0.0329
LJ1 2875 0.0168 0.0177
RLJ1 2869 0.0143 0.0159
LJ2 3737 0.0175 0.0200
RLJ2 3730 0.0181 0.0209
LJ3 1551 0.0185 0.0197

We have also calculatedτ by fitting a gaussian function (see equation (4)) toKB(t)
calculated according to the expressionKB(t) = KMD(t)−KMC(t). The fittedτ -values (see
table 2) are greater than the theoretical ones, the differences being about 10%–15%. Due
to the incomplete description of the binary term using a gaussian function with the values
of �2

0 andτ calculated theoretically, some authors assumed a functional form with a softer
decay, such as sech2(t/τ ) [3, 9, 10, 15]. However, a careful analysis of both functional
forms for our systems has shown that the short-time dynamics may be better described by a
gaussian function, but with the parameters obtained from the fitting instead of the theoretical
values. The fit is more reliable for liquid metals than for Lennard-Jones fluids including the
corresponding repulsive models (chi squared for the fit is three orders of magnitude smaller
for liquid metals than for Lennard-Jones systems). So, the binary part used for checking
the SS theory in the next section is the gaussian functional with the fittedτ -value.

4.3. The velocity autocorrelation function

The resultingCMD(t) functions are compared with their respectiveCSS(t)s in figure 4. In
the case of the liquid metals (LM1, LM2 and LM1T) we can observe a good agreement
between theoretical and simulation findings. However, there are some discrepancies in the
case of the repulsive potential models (specially for RLM1). The disagreements are more
marked for the Lennard-Jones systems. It should be noted that these discrepancies inC(t)

can produce significant differences between self-diffusion coefficients (about 40% in some
cases). In figure 4 we have also represented theCSS(t) functions obtained when the mode-
coupling contribution to the memory function is omitted (KSS(t) ∼ KB(t)). In general the
contribution of theKMC(t) term is rather small. It is interesting to note that in some cases
(RLM1, RLJ1 and LJ3) the agreement with theCMD(t) functions is significantly better
when only the binary part of the memory function is considered. Our results suggest that
the SS theory produces more reliable results for systems withC(t) functions which present
more pronounced backscattering. This is consistent with the deficiencies of the SS theory
observed for liquid metals at high temperatures [13, 16–18].

In order to analyse more carefully the discrepancies between the MD and the SS results
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Figure 4. Velocity autocorrelation functions. Dots:CMD(t); solid lines:CSS(t); dashed lines:
CSS(t) assumingKSS(t) = KB(t).

we have calculated

1K(t) = KMD(t)−KSS(t)

KMD(0)
= KMD(t)−KB(t)−KMC(t)

KMD(0)
. (9)

For a more reliable comparison the differences have been normalized with respect to the
initial values ofKMD(t). The1K(t) results together with the contributions of the binary
and mode-coupling terms are shown in figure 5. In general1K(t) shows values of the
same order of magnitude as those ofKMC(t)/KMD(0). As with theC(t) functions, for
some systems (LM1, LM2, LM1T, RLM2 and RLJ2) the contribution of the mode-coupling
term diminishes1K(t), and the theoreticalKSS(t) functions become improved, but for
the other systems, which are characterized byC(t) functions with weak backscattering, the
mode-coupling contribution increases1K(t). In relation to the contribution of the binary
term toKSS(t) we can observe that in the case of potentials with a soft repulsive wall, such
as for liquid metals, the assumed gaussian model produces reasonable results. This is in
contrast with the conclusions of Nowotny and Kahl [13], who attributed the failure of the
SS theory for theC(t) of a liquid metal at high temperature (with a weak backscattering)
to the binary term. However, for the Lennard-Jones systems, with more repulsive potential
walls, the1K(t) functions show peaks at short times which indicate that theKB(t) function
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Figure 5. Solid lines: 1K(t) = [
KMD(t)−KSS(t)

]
/KMD(0); long-dashed lines:

KB(t)/K
MD(0); dashed lines:KMC(t)/KMD(0).

should be improved. This is consistent with the less accurate fit of the gaussian function to
theKB(t)s for these systems.

Gudowskiet al [16] and Larsson [17] suggested fittingK(t) to a corrected version of
the Levesque and Verlet formula:

K(t) = A exp(−at2)+ Bt4 exp(−bt)− Ctγ exp(−c2t2). (10)

However, our1K(t) results cannot be reasonably fitted by using this function. The
findings in this paper suggest that1K(t) does not take the form of a simple function, and
that a modified version of the SS theory should probably be developed. Larsson [17] has
already stated that the decomposition ofK(t) into two independent terms is unrealistic,
and he supported the development of a new theory which incorporates a certain degree of
interdependence between the binary and mode-coupling terms. Our results support this idea,
since the largest1K(t) values in general correspond to the time interval for whichKB(t)

becomes close to zero andKMC(t) starts to increase.

5. Conclusions

The mode-coupling contribution toK(t), which is basically due to the density–density
K00(t) term, is larger in liquid metals than in Lennard-Jones fluids under equivalent thermo-
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dynamic conditions. In the case of liquid metals,K00(t) shows a three-peak structure while
for Lennard-Jones systems there is only one peak. This has been associated with the softer
repulsive wall of the former potentials and is more evident for the systems with a high
volume packing fraction. The attractive well of the potential increases the heights of the
peaks.

The binary term of the memory function is correctly described using a gaussian
functional with fitted parameters, especially for liquid metals. The values of�2

0 and τ
mainly depend on the repulsive wall of the potential. The lower values of�2

0 and higher
values ofτ correspond to the softer potential walls. The attractive well of the potential has
a minor influence on these parameters.

The SS theory yields good results for dense liquids metals. However, noticeable
discrepancies between the MD and SS results have been observed when theC(t) functions
show a weak backscattering. Moreover for Lennard-Jones systems the differences are larger
because of the less appropriate description of the binary term using a gaussian function.
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